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Motion Analysis of Two Cable-Connected Bodies
in Atmospheric Free-Fall

Shlomo Djerassi* and Zvi Viderman†
RAFAEL, Ministry of Defense, Haifa 31021, Israel

Occasionally, missions of missiles are aborted shortly after launch. It is common practice in such events
to activate self-destruct mechanisms that cause the explosion of the missiles and the dispersion of debris
over large areas. This work presents an alternative approach to mission termination. Given a mission
abortion signal, the missile is separated by means such as explosive bolts into two parts, connected to
one another by a cable. A 1000-kg missile is considered, separated into a 200-kg, aerodynamically unstable
part and an 800-kg, aerodynamically stable part. It is shown that if the altitude of the separation zone
is 2000 – 10,000 m, the resulting motion causes the missile parts to hit the ground after traversing a
horizontal distance, which essentially depends on the missile horizontal speed at the time of separation
if the missile was in the subsonic range, and that, within limits, this result depends weakly on the exact
length of the cable and on the locations of the cable attachment points. Here the idea is presented together
with an analysis supporting the indicated results and evaluating the impulses exerted during motion on
the missile parts by means of the cable.

Introduction

T HE Ariane Failure Report1 recounts the chain of events
leading to the disintegration of the Ariane V501 launcher.

The launcher self-destruct system had been triggered by the
separation of the booster from the main engine. The ensuing
explosion, occurring at an altitude of approximately 4000 m,
led to launcher disintegration and to the formation of debris
scattered over an area of approximately 12 km2. Recovery of
the debris proved to be dif� cult. Similar events are reported2

in connection with the failure of the Theater High Altitude
Area Defence (THAAD) antimissile interceptor.

At times, it may be found bene� cial to refrain from the use
of explosives in self-destruct mechanisms, to prevent addi-
tional damage and to facilitate debris recovery. In such events,
the following idea may be useful. At the time of mission abor-
tion, designated T, explosive bolts are activated, separating the
missile into two parts, A and B, as shown in Fig. 1. These parts
remain connected to one another by means of a cable of length
L, attached to points Ā and B̄ of A and B, respectively. The
cable is initially, i.e., at time T, loose, and the set of forces
exerted on A and B (mainly aerodynamic and gravitational
forces) cause the distance between Ā and B̄ to increase. When
this distance becomes L, Ā and B̄ exert impulses on one an-
other through the cable, which becomes instantaneously taut.
A tumbling motion of both A and B is thus initiated. The dis-
tance between points Ā and B̄ changes erratically, and the cable
becomes alternately loose and taut. Consequently, A and B
rapidly lose their horizontal velocity component, ultimately
hitting the ground at a predictable horizontal distance from the
separation zone. For example, suppose that A and B are com-
posed of 0.5-m-diam cylinders weighing 200 and 800 kg, re-
spectively, the cable is 1 m long, the missile moves horizon-
tally with a speed of 200 m/s, and the altitude of the separation
zone is 8000 m. If T = 0, then the path traversed by the mass
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center of B is shown by the solid line in Fig. 2. The intermittent
line indicates the path traversed by the mass center of B if,
with the same conditions at T = 0, B moves independently
from A.

Motions of two bodies connected by means of a cable have
been the subject of numerous investigations in connection with
space,3,4 airborne,5,6 sea,7,8 and land9,10 applications. Typically,
space, airborne, and sea applications involve long cables, i.e.,
as compared to the size of the bodies that are connected.
Hence, the inertial properties of the cable, in addition to those
of the bodies involved, are accounted for. By way of contrast,
inertial properties of cables in land applications are usually
disregarded, because cables in such applications are typically
short. This makes it possible to replace the cables by rods.11,12

However, rods impose kinematical constraints, whereas ca-
bles do so only if in tension. Otherwise, the cable is loose and
the bodies move independently of one another. In an ongoing
motion of two cable-connected bodies, which is of interest
here, a constrained motion (taut cable) and an unconstrained
motion (loose cable) may occur alternately. Moreover, the un-
constrained motion is accompanied by impacts occurring when
the cable becomes instantaneously taut, or when the bodies
collide with one another. The studies in Refs. 9 and 10 do not
deal with these issues, as only situations in which the cable is
in tension throughout the motion are discussed.

It is the purpose of this work to generate equations govern-
ing motions of the system shown in Fig. 1 in atmospheric free-
fall and to develop an algorithm dealing with situations in
which the cable becomes instantaneously or continuously taut;
to apply the algorithm to the system shown in Fig. 1; and to
obtain predictions of the indicated motions. Speci� cally, the
trajectory of the mass center of B and impulses occurring dur-
ing motion are investigated.

The governing equations are generated in the following sec-
tion. Next, simulation results of interest are reported and dis-
cussed. Conclusions concerning the present approach to mis-
sion abortion close this work.

Analysis
As indicated, the model shown in Fig. 1 represents S, the

system in question, which consists of rigid bodies A and B and
of a cable C. Assuming that the cable is loose, and that, there-
fore, A and B move independently of one another, one can
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Fig. 1 System model after separation.

Fig. 2 Paths traversed by the mass center of B.

describe the motion of S in N, a Newtonian reference frame,
as follows. Let ai (i = 1, 2, 3), bi (i = 1, 2, 3), and ni (i = 1,
2, 3) be three sets of three dextral, mutually perpendicular unit
vectors � xed in A, B, and N, respectively. Let vA and vB be
the angular velocities of A and B in N, and and be theA* B*v v
velocities of A* and B*, the mass centers of A and B, in N.
Then 12 generalized speeds ur (r = 1, . . . , 12) can be de� ned,
so that

Av = u a 1 u a 1 u a (1)1 1 2 2 3 3

A*v = u n 1 u n 1 u n (2)4 1 5 2 6 3

Bv = u b 1 u b 1 u b (3)7 1 8 2 9 3

B*v = u n 1 u n 1 u n (4)10 1 11 2 12 3

Furthermore, assuming that ai(1, 2, 3) and bi(1, 2, 3) are par-
allel to the central principal axes of A and B, respectively, and
denoting the associated moments of inertia of A and B , ,A AI I1 2

and , , , and the masses of A and B mA and mB, re-A B B BI I I I3 1 2 3

spectively, one can generate the generalized inertia forces F*r
(r = 1, . . . , 12) for S straightforwardly (Ref. 13, Sec. 4.11).
These are

A A A*F = 2I uÇ 2 u u (I 2 I )1 1 1 3 2 3 2

A A A*F = 2I uÇ 2 u u (I 2 I ) (5)2 2 2 1 3 1 3

A A A*F = 2I uÇ 2 u u (I 2 I )3 3 3 2 1 2 1

* * *F = 2m uÇ , F = 2m uÇ , F = 2m uÇ (6)4 A 4 5 A 5 6 A 6

B B B*F = 2I uÇ 2 u u (I 2 I )7 1 7 9 8 3 2

B B B*F = 2I uÇ 2 u u (I 2 I ) (7)8 2 8 7 9 1 3

B B B*F = 2I uÇ 2 u u (I 2 I )9 3 9 8 7 2 1

* * *F = 2m uÇ , F = 2m uÇ , F = 2m uÇ (8)10 B 10 11 B 11 12 B 12

Now A and B are subject to aerodynamical forces and couples
and to gravitational forces. The aerodynamical forces and cou-

ples can be written in terms of two angles, a and b, the former
being the angle of attack, de� ned, in connection with A, as

2 1 2 2 2 1/2a =̂ cos [n /(n 1 n 1 n ) ] (9)1 1 2 3

where, with no-wind conditions

A*n =̂ v ?a i = 1, 2, 3i i

This de� nition allows a to take on values between zero and
p, as might be the case if A undergoes tumbling. Next b is
de� ned as the angle between the projection of on a planeA*v
parallel to a2 and a3, say, the plane containing A*, and a vector
parallel to a2 and lying in the indicated plane; that is,

21 2 2 1/2b =̂ (1 1 n / un u )cos [n /(n 1 n ) ]/23 3 2 2 3

2 1 2 2 1/21 (1 2 n / un u ){2p 2 cos [n /(n 1 n ) ]}/2 (10)3 3 2 2 3

Thus, b may vary between zero and 2p. One can now de� ne
the following three dextral, mutually perpendicular unit vec-
tors, namely:

a9 = cos(a)a 1 sin(a)cos(b)a 1 sin(a)sin(b)a (11)1 1 2 3

a9 = [sin(a)a 2 cos(a)cos(b)a2 1 2

2 cos(a)sin(b)a ]sgn(p/2 2 a) (12)3

a9 = [sin(b)a 2 cos(b)a ]sgn(p/2 2 a) (13)3 2 3

The function sgn(p/2 2 a) is used to validate the following
approximate expressions for the lift force and the dragA*L
force , both exerted on A*, and the pitch couple of torqueA*D
M A exerted on A for 0 # a # p, when written as follows:

A* A* 2L = 1/2r(v ) S C a9 (14)refA L 2

A* A* 2D = 21/2r(v ) S C a9 (15)refA D 1

A A* 2M = 1/2r(v ) S D C a9 (16)refA refA M 3

Here, Sref A and DrefA are geometry-dependent constants, and CL,
CD, and CM are aerodynamic coef� cients given for a # p/2
by

2C = 1/2[A sin(2a) 1 B cos(a)sin (a)] (17)L A A

C = C 1 C [1 2 cos(2a)] (18)D AD A0

C = Dx [C cos(a) 1 C sin(a)] (19)M A L D

where AA, BA, CA, , and DxA are geometry-dependent con-CAD0

stants. Expressions for p/2 # a # p are obtained from Eqs.
(17 – 19), if a is replaced with p 2 a.

Gravitational force can be expressed as

A*F = 2m gn (20)A 3

where n3 is aligned with the local vertical and points upward,
and g is the gravitational acceleration.

Expressions similar to those in Eqs. (9 – 20) can be written
for B, so that the generalized active forces Fr (r = 1, . . . , 12)
(Ref. 13, Sec. 4.4) can be generated for S. Equations governing
the motion of S can be formed if Fr (r = 1, . . . , 12) are
substituted, together with the generalized inertia forces given
by Eqs. (5 – 8), in the following equations (Ref. 13, Sec. 6.1):

F 1 F* = 0 r = 1, . . . , 12 (21)r r

Note that expressions (14 – 16) are based on approximations
representing a certain missile con� guration, that they disregard
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aerodynamical interaction between the missile parts, and that
no-wind conditions are assumed.

Three events may interfere with the continuous motion of
S, as represented by Eqs. (21):

1) The cable may become instantaneously taut, in� icting an
impact on A and B.

2) A and B may hit one another and, consequently, undergo
an impact.

3) The cable may become continuously taut, imposing a
constraint on the motion of S. The effects of these events on
the motion of S are now considered in detail.

One may start with the � rst event, focusing attention on
points Ā and B̄, assumed to be connected to one another by
means of an inextensible cable of length L. Suppose andĀv

are the velocities of Ā and B̄ in N. In view of Eqs. (1 – 4),B̄v
these can be written

¯ ¯ ¯ ¯A A* A A*A B B* B B*Bv = v 1 v 3 r , v = v 1 v 3 r (22)

where and are position vectors directed from A* and
¯ ¯A*A B*Br r

B* to Ā and B̄, respectively. Accordingly, one can express Āv
and asB̄v

12 12

¯ ¯ ¯ ¯A A B Bv = v u , v = v u (23)r r r rO O
r=1 r=1

where and (r = 1, . . . , 12), the coef� cients of ur (r = 1,
¯ ¯A Bv vr r

. . . , 12), are called partial velocities (Ref. 13, Sec. 2.14) and
constitute con� guration-dependent vectors, namely, vector
functions of the generalized coordinates and time. Conse-
quently, vR, the relative velocity of Ā and B̄ given by

¯ ¯R A Bv =̂ v 2 v (24)

can be expressed as

12

R Rv = v u (25)r rO
r=1

where is de� ned asRv r

¯ ¯R A Bv =̂ v 2 v r = 1, . . . , 12 (26)r r r

Now suppose d is the distance from Ā to B̄. It may occur that
d = L and = uvRu > where is an arbitrarily small quan-Ç Ç Çd d , d0 0

tity. Then the cable becomes taut, and A and B are subjected
to impulsive forces through the cable. Moreover, if the asso-
ciated impact, assumed to be elastic, starts at t = t1 and ter-
minates at t = t2, so that t2 2 t1 is in� nitely small, one can
write

R Rv ?d u = 2v ?d u (27)t t2 1

or

R R Rv ?d u 2 v ?d u = 22v ?d u (28)t t t2 1 1

where d is a unit vector parallel to the line connecting Ā to B̄
and pointing toward Ā. If, in addition, both sides of Eq. (25)
are dot multiplied with d, that is,

12

R Rv ?d = v ?du (29)r rO
r=1

and if Dur is de� ned as

Du =̂ u (t ) 2 u (t ) r = 1, . . . , 12 (30)r r 2 r 1

then, using Eqs. (28 – 30), one has

12

R Rv ? dDu = 22v ?d u (31)r r tO 1
r=1

Next Eqs. (21) are considered. It can be shown that if these
are integrated from t = t1 to t = t2, the following equations
result:

t12 2

m Du = 2 F dt r = 1, . . . , 12 (32)rs s rO E
s=1 t1

where mrs is the element in row r, column s of the mass matrix
associated with Eqs. (21). Suppose that, during impact, point
Ā exerts on point B̄ a force F of magnitude F; that is, F = Fd.
Then, in accordance with the law of action and reaction, point
B̄ exerts on point Ā a force 2F; and if these are the only
impulsive forces appearing in Fr (r = 1, . . . , 12) between t1
and t2, then

t t t2 2 2

¯ ¯B A RF dt = [F ?v 1 (2F)?v ] dt = 2 F ?v dtr r r rE E E
t t t1 1 1

t t2 2

R R= 2 Fv ? d dt = 2v ?d F dt (33)r rE E
t t1 1

where , being a con� guration-dependent quantity (and,Rv ?dr

hence, remaining constant between t1 and t2), is removed from
under the integral. If I is a quantity de� ned as

t2

I =̂ F dt (34)E
t1

then, in connection with Eq. (33)

t2

RF dt = 2Iv ?d r = 1, . . . , 12 (35)r rE
t1

so that, in view of Eqs. (32)

12

Rm Du = Iv ?d r = 1, . . . , 12 (36)rs s rO
s=1

Now, mrs (r, s = 1, . . . , 12) can be identi� ed with the aid of
Eqs. (5 – 8), namely,

Am = 2I (r = 1, 2, 3), m = 2m (r = 4, 5, 6)rr r rr A
(37)

Bm = 2I (r = 7, 8, 9), m = 2m (r = 10, 11, 12)rr r rr B

and, because mrs = 0 if r ¹ s, (r, s = 1, . . . , 12), one has, with
the aid of Eqs. (36)

RDu = Iv ?d/m r = 1, . . . , 12 (38)r r rr

Substituting Dur from Eq. (38) in Eq. (31), one obtains

12

R 2 RI (v ? d ) /m = 22v ?d u (39)r rr tO 1
r=1

an equation which, when solved for I, results in

12

R R 2I = 22v ? d u (v ?d ) /m (40)t r rrYFO G1
r=1
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Fig. 3 Flow chart underlying the simulation code.

With I in hand, new values of generalized speeds resulting
from the impact can be evaluated as follows:

Ru (t ) = u (t ) 1 Iv ? d/m r = 1, . . . , 12 (41)r 2 r 1 r rr

if use is made of Eqs. (38) and (30).
The second event concerns A and B hitting one another. An

exact analytical description of this state of affairs might be
extremely complex if A and B comprise complex bodies. To
make the analytical treatment manageable, it is to be assumed
here that the surfaces of A and B coming into contact during
impact are spherical with radii rA and rB and centers located at
point Â and B̂ of A and B, respectively (Fig. 1). Moreover, it
is assumed that the coef� cient of friction between the colliding
surfaces is zero, which means that the tangential component
of vR remains intact during the impact (Ref. 13, Sec. 7.9). Now
suppose b is the distance from Â to B̂, and vR and (r = 1,Rvr

. . . , 12) are rede� ned as vR 2 and 2 (r =
ˆ ˆ ˆ ˆA B R A B=̂ v v v =̂ v vr r r

1, . . . , 12), respectively. It may occur that b = rA 1 rB and
= 2uvR u < 0. Then A and B undergo an impact assumed hereÇb

to be elastic. The evaluation of the associated change in the
generalized speeds proceeds as follows. De� ne a unit vector b
parallel to the line connecting Â and B̂ and pointing toward Â.
Then, during impact, Â exerts on B̂ a force of magnitude F
through the surfaces of the indicated spheres, whereas B̂ exerts
on Â a force 2F. Under these circumstances, Eq. (33) is re-
placed with

t t2 2

RF dt = v ? b F dt (42)r rE E
t t1 1

where , being a con� guration-dependent quantity, is re-Rv ?br

moved from under the integral, and where now F = 2Fb.
Equations similar to Eqs. (40) and (41) can be obtained, so
that now

12

R R 2I = 2v ?b u (v ?b) /m (43)t r rrYFO G1
r=1

Ru (t ) = u (t ) 2 Iv ? b/m r = 1, . . . , 12 (44)r 2 r 1 r rr

Finally, the third event is considered. Accordingly, it may
occur that d = L and 0 < < an event that can be regardedÇ Çd d ,0
as indicating transition to a motion with a taut cable. Such a
motion is subject to the following constraint equation:

Rv ?d = 0 (45)

When written explicitly with the aid of Eqs. (1 – 4) and (24),
Eq. (45) gives rise to a linear relation between u1, . . . , u12,
which, if solved for u12, reads

11

u = C u (46)12 12r rO
r=1

where C12r (r = 1, . . . , 11) are given, in view of Eqs. (29) and
(45), by

R RC = 2v ?d/v ?d r = 1, . . . , 11 (47)12r r 12

The equations governing the associated motion are (Ref. 13,
Sec. 6.1)

*F 1 F* 1 C (F 1 F ) = 0 r = 1, . . . , 11 (48)r r 12r 12 12

Moreover, the cable might now become loose, a possibility
that must be checked continuously, or, in the context of nu-

merical integration, at each integration step. To do so, one may
de� ne R as R R ? d, where R is the force exerted Ā on B̄=̂
through the cable when the cable is taut. The cable becomes
loose when R � rst becomes negative, in which event Eqs. (21)
resume their role as the governing equations. One must now
determine R, a task made possible if the constraint in Eq. (46)
is temporarily removed. Then u12 becomes an independent var-
iable called auxiliary generalized speed (Ref. 13, Sec. 4.9).
Equations (21) become valid again, except that now they in-
clude contributions from R, namely, (r = 1, . . . , 12).Rv ?Rr

The last of Eqs. (21) now reads

R*F 1 F 1 v ?R = 0 (49)12 12 12

Moreover,

¯ ¯R A Bv = v 2 v = 2n (50)12 12 12 3

a relation obtained with the aid of the last of Eqs. (26), and
with Eqs. (22) and (1 – 4). One then has

*F 1 F 2 Rn ?d = 0 (51)12 12 3

Finally,

*R = (F 1 F )/n ?d (52)12 12 3

One then has all of the ingredients required to construct a
code simulating the motion of S. The � ow chart in Fig. 3
summarizes the underlying algorithm. Accordingly, a simula-
tion code had been constructed which, with the following pa-
rameter values, yields Fig. 2: = 6.25, = = 34, = 25,A A A BI I I I1 2 3 1

= = 2000 kg-m2, mA = 200, mB = 800 kg, AA = 5, BA =B BI I2 3

10, CA = 3, = 0.4, DxA = 1.6, AB = 25, BB = 50, CB = 8,CAD0

= 0.8, DxB = 20.5, SrefA = 0.2 m2, DrefA = 0.5 m, =C SBD refB0

0.2 m2, and DrefB = 0.5 m. It is also assumed that Â and B̂ are
located at 21.2a1 and 1.2b1 m relative to A* and B*, respec-
tively, that rA = rB = 0.79 m, and that = 1 m/s. Finally, theÇd0

air density r is taken to be the following function of h, the
altitude of B*: r = 0.00348368P/T kg-m3, where T = 288.16
2 0.0065h, P = 101325 (T/288.16)5.256122.

Although the behavior of the two connected bodies seems
erratic, Fig. 2 shows that the bodies hit ground after traversing
a horizontal distance of approximately 2500 m, as compared
with a horizontal distance of 6500 m traversed by B* if B
moves independently of A; and this distance is only slightly
sensitive to variations in such factors as the altitude of the
separation zone, the cable length, and the location of attach-
ment points Ā and B̄, if kept within reason. The validity of this
statement is investigated in the next section.

Results and Discussion
Figure 4 shows the paths traversed by B* if the initial dis-

tances between Ā and B̄ are 0.8 and 0.0 m, as when these
points are located, relative to A* and B*, at 22a1 1 0.4a3 and
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Fig. 4 Path traversed by B* with different cable attachment
points.

Fig. 5 Path traversed by B* with different cable lengths.

Fig. 6 Impulses experienced with different cable lengths.

Fig. 7 Cable tension evaluated with different values of .Çd0

Fig. 8 Path traversed by B* predicted with different values
of .Çd0

2b1 2 0.4b3 m, and at 22a1 1 0.4a3 and 2b1 1 0.4b3 m,
respectively. These results indicate that shorter horizontal dis-
tances are obtained if Ā and B̄ are initially located as far from
one another as possible, so as to maximize the destabilizing
effect of the � rst impacts.

Figure 5 shows the path traversed by B* if the lengths of
the cable are L = 1 m and L = 2 m, and indicates an insensi-
tivity of the path to the length of the cable. Thus, Figs. 2, 4,
and 5, and similar � gures obtained for separation zones 2000–

10,000 m high, indicate that the horizontal distance traversed
by B*, when B is connected to A with a cable, is 2500 – 3500
m, and that this distance depends primarily on the horizontal
speed of B* at the time of separation.

Figure 6 shows typical impulses exerted by Ā and B̄ on one
another through the cable when the cable becomes instanta-
neously taut. The dots stand for impulses associated with a 1-
m-long cable, whereas the x signs indicate impulses occurring
when the cable is 2 m long. One may conclude that the im-
pulses do not exceed 500 kg-s. Moreover, the impulses are not
sensitive to the length of the cable, nor are they sensitive to
the location of Ā in A and of B̄ in B, an observation supported
by additional runs.

Lastly, the signi� cance of the choice made for is studiedÇd0

with the aid of Figs. 7 and 8. Figure 7 shows paths traversed
by B*, and Fig. 8 shows the associated tension in the cable,
simulated with = 0.1, 0.4, and 1.0 m/s. Figures 7 and 8Çd0

indicate that, within limits, path (and impulse) predictions are
not sensitive to the choice of , unlike tension predictions.Çd0

However, based on a number of additional runs, one can es-
timate the peak value of the tension to be 6000 kg. Finally,
one can show that, if < 0.015 m/s, then the cable is consid-Çd0

ered loose throughout the simulation, and that this fact has a
minor effect on the path traversed by B*.

One can summarize the results as follows. The paths tra-
versed by B* can be predicted with reasonable accuracy, as
are the associated impulses, whereas tension predictions de-
pend on the choice of . A number of runs are required, withÇd0

different 0, to establish an acceptable estimation of the tensionÇd
peak value.

A � nal comment is in order. The model in Fig. 1 is a simple
one, as implied by the various assumptions made in the sequel.
It is nevertheless argued that, because the motion of the system
is erratic, its main characteristics have been captured.

Conclusions
An algorithm has been presented that can be used to predict

the motion of two cable-connected bodies in atmospheric free-
fall. The path traversed by the bodies can be predicted with
reasonable accuracy, as can the impulses associated with the
impacts occurring when the cable becomes instantaneously
taut or when the bodies collide with one another. The cable
may become continuously taut, in which event it is possible
to predict the associated tension. However, the tension predic-
tions were found to be less conclusive. In general, higher ten-
sion levels tend to appear at a later part of the motion. Thus,
if the cable is designed to withstand the impulses, it is likely
to survive the crucial part of the motion. Thereafter, the missile
parts move essentially downward. By that time, the main task
of the cable is completed. The missile parts will hit the ground
closer to one another and closer to the abortion zone. If no
explosion takes place, minimum damage will be caused to the
debris as compared with the damage caused by a mission ter-
minated with an explosion.
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